Extensions 1→N→G→Q→1 with N=C3 and Q=C32×D9

Direct product G=N×Q with N=C3 and Q=C32×D9
dρLabelID
D9×C33162D9xC3^3486,220

Semidirect products G=N:Q with N=C3 and Q=C32×D9
extensionφ:Q→Aut NdρLabelID
C3⋊(C32×D9) = C32×C9⋊S3φ: C32×D9/C32×C9C2 ⊆ Aut C354C3:(C3^2xD9)486,227

Non-split extensions G=N.Q with N=C3 and Q=C32×D9
extensionφ:Q→Aut NdρLabelID
C3.1(C32×D9) = C3×C32⋊D9φ: C32×D9/C32×C9C2 ⊆ Aut C354C3.1(C3^2xD9)486,94
C3.2(C32×D9) = C32×D27φ: C32×D9/C32×C9C2 ⊆ Aut C3162C3.2(C3^2xD9)486,111
C3.3(C32×D9) = C3×C27⋊C6φ: C32×D9/C32×C9C2 ⊆ Aut C3546C3.3(C3^2xD9)486,113
C3.4(C32×D9) = D9×C3×C9central extension (φ=1)54C3.4(C3^2xD9)486,91
C3.5(C32×D9) = D9×He3central stem extension (φ=1)546C3.5(C3^2xD9)486,99
C3.6(C32×D9) = D9×3- 1+2central stem extension (φ=1)546C3.6(C3^2xD9)486,101

׿
×
𝔽